
Sergej Kurakin

Decorator and Chain of
Responsibility Patterns

Software design pattern is
a general, reusable

solution to a commonly
occurring problem.

https://en.wikipedia.org/wiki/Software_design_pattern

https://en.wikipedia.org/wiki/Software_design_pattern

Decorator Pattern

You have Class you
want to change.

Modify some
behaviour.

You can edit code in
that class.

• Class may become bigger and harder to maintain.

• Tests should be added/changed for that class.

• Some parts of your system may change behaviour.

Disadvantages

You can extend that
class.

• Tests should be added for extending class.

• Parent Class behaviour may change.

• May cause huge hierarchy of classes.

Disadvantages

Decorator Pattern

Decorator pattern allows
behavior to be added to an
individual object,
dynamically, without
affecting the behavior of
other objects from the
same class.

https://en.wikipedia.org/wiki/Decorator_pattern

https://en.wikipedia.org/wiki/Decorator_pattern

• Flexible

• Change behaviours

• Composing

Advantages

• Multi-wrapped object

• Small classes

Disadvantages

Examples

Transformers

Services

Chain of Responsibility
Pattern

You have Class you
want to change.

Change it’s
responsibility.

You can edit code in
that class.

• More and more “if/else” added.

• Tests should be added/changed for that class.

• Class may become huge and harder to maintain.

Disadvantages

You can extend that
class.

• Tests should be added for extending class.

• Parent Class behaviour may change.

• May cause huge hierarchy of classes.

Disadvantages

Chain of Responsibility
Pattern

Chain of Responsibility
pattern consists of a source
of command objects and a
series of processing
objects.

https://en.wikipedia.org/wiki/Chain-of-responsibility_pattern

https://en.wikipedia.org/wiki/Chain-of-responsibility_pattern

if ... else if ... else if ...
else if ... else if ... else
if ... else if ... else if ...
else if ... else if ... else
if else ... endif

• Reduces coupling

• Single Responsibility Principle

• Open/Closed Principle

Advantages

• Unhandled calls

Disadvantages

Examples

Services

Share your thoughts!

https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Decorator_pattern
https://refactoring.guru/design-patterns/decorator
https://www.youtube.com/watch?v=GCraGHx6gso
https://en.wikipedia.org/wiki/Chain-of-responsibility_pattern
https://refactoring.guru/design-patterns/chain-of-responsibility

Links

https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Decorator_pattern
https://refactoring.guru/design-patterns/decorator
https://www.youtube.com/watch?v=GCraGHx6gso
https://en.wikipedia.org/wiki/Chain-of-responsibility_pattern
https://refactoring.guru/design-patterns/chain-of-responsibility

Thanks!

