
Factories
Sergej Kurakin

Most of us write code.

Most of us use
Frameworks.

Most of us write
Object-oriented Code.

Most of us want to create
extensible and

maintainable code.

One of the reasons we fail
is...

new SomeClass();

But we have design
patterns to solve that.

Software design pattern is
a general, reusable

solution to a commonly
occurring problem.

https://en.wikipedia.org/wiki/Software_design_pattern

• Factory

• Factory method pattern

• Abstract factory pattern

Factory

Factory patterns are
creational patterns.

• Builder pattern

• Prototype pattern

• Singleton pattern*

Other Creational Patterns

Factory

“Factory is a function or
method that returns
objects of a varying
prototype or class.”

https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)

Method or function that
returns new object.

class GreeterFactory {
 public function make(): Greeter
 {
 return new Greeter();
 }
}

function makeGreeter(): Greeter
{
 return new Greeter();
}

Parameterized factory.

This is up to developer
how to use such factory.

Factory method pattern

a.k.a. Virtual Constructor

“Define an interface for
creating an object, but let
subclasses decide which

class to instantiate.”

You define a class with
“factory method”.

Also you define a subclass
that implements “factory

method”.

Every subclass returns
new object type.

Abstract Factory Method in
Abstract Class.

Concrete Factory Method
in Abstract Class.

Parameterized factory
method.

Provides hooks for
subclasses.

When to use?

Abstract factory
pattern

a.k.a. Kit

“Provide an interface for
creating families of related

or dependent objects
without specifying their

concrete classes.”

You define an abstraction
with factory methods.

You create concrete
implementations of factory

methods.

You instantiate one
concrete implementation

by some rules.

During execution you
will need one

“Concrete Factory”.

Parameterized factory
methods are possible.

 Isolates concrete
classes.

Makes exchanging
product families easy.

Promotes consistency
among products.

Supporting new kinds
of products is difficult.

When to use?

What about XXI century?

We widely use Factory but
together with Dependency

Containers.

Factory method
pattern.

Abstract factory performs
great together with

Dependency Containers.

Discussion!

Factory (Wikipedia)
Factory Method Pattern (Wikipedia)
Abstract Factory Pattern (Wikipedia)

Factory Method Pattern (Refactoring Guru)
Abstract Factory Pattern (Refactoring Guru)

Design Patterns: Elements of Reusable Object-Oriented Software

https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_method_pattern
https://en.wikipedia.org/wiki/Abstract_factory_pattern
https://refactoring.guru/design-patterns/factory-method
https://refactoring.guru/design-patterns/abstract-factory
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612

Thanks!

